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Quadratic Lagrangians and Palatini’s device 
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Department of Theoretical Physics, Faculty of Science, Australian National University, 
Canberra 2600, Australia 

Received 11 October 1978 

Abstract. This paper deals with the mutual inequivalence of g-variation and P-variation of 
a given action s, the components of linear connection r m k (  being required to be symmetric. 
Under g-variation S is required to be stationary with respect to variations of the metric 
tensor g,,, the r m k j  being taken to be Christoffel symbols from the outset, whereas under 
P-variations the gi, and r m k i  are initially regarded as mutually independent and S is 
required to be stationary with respect to independent variations of these quantities. The 
discussion is illustrated at length by examples in which the Lagrangian of S is one or another 
of a set of homogeneous or inhomogeneous quadratic invariants of the Riemann tensor. 

1. Introduction 

The field equations of relativistic theories of gravitation are often taken to be generated 
by a variational principle, i.e. they express the stationarity of some action 
S := J L(-g)”’ dx under variations, with fixed boundary values, of the components gii 
of the metric tensor and their first derivatives. In particular, in Einstein’s theory, which 
operates within the framework of a 4-dimensional normal-hyperbolic Riemann space 
V4, the Lagrangian L is taken to be the scalar curvature R, at any rate to within an 
additive constant - 2h. In this case the variation of the gij brings with it the variation of 
the components rkii of the linear connection, since these are Christoffel symbols from 
the outset. In other words, the only quantities subject to independent variation are the 
gij; and I then speak of g-variation of S. 

For formal reasons the procedure just described has sometimes been replaced by 
what is commonly referred to as ‘Palatini’s device’, although Palatini was not respon- 
sible for it. In this process, here called P-variation, one regards the gij and the as 
initially quite unrelated functions. (The r’,,,,, are here taken to be symmetric.) One then 
requires S to be stationary with respect to arbitrary independent variations of gii and 
rrmn which vanish on the boundary. Thus, if w := (-g)’/’ and X := wX for every X, one 
has in the first place the generic identity 

8 J J  L! dx =: (aii8gij + Bki’8rkij) dx. (1.1) 

Consequently the ‘P-equations’ are 
9Jij = 0,  

Bk” = 0, 
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whereas the ‘g-equations’ are 

( g y k  -$qpJ) - % ‘ J  = 0,  (1.4) 

where subscripts following a colon denote covariant differentiation with respect to the 
Christoffel symbols 

(1.5) fkl, := 1 kI zg (gll,, + gr,,, - gl,,’). 

One must not be deceived by superficial appearances: it is not the case that a given 
solution of the P-equations will necessarily satisfy the g-equations. If 

81‘Ik := a2/aRlyk (1.6) 

(symmetries of RII]k being ignored) and 

BkIJl := $(&I,’ - 3kl’l + 3kl‘l - ZJp), (1.7) 

then in (1.4) 
Bkii = Bk?l, 

Bkij = ,gJki j ’ ; ’ ,  

whereas in (1.3) 

(1.9) 

subscripts following a semicolon denoting covariant differentiation with respect to rkii; 
but the connections rkji and fkii need not, and in general will not, be the same. In short, 
the processes of g-variation and P-variation are in general inequivalent. 

One gains the impression that the conclusion just stated is frequently not borne in 
mind when in various contexts P-variations are contemplated in place of g-variations- 
apparently as a mere matter of convenience. This may have come about because when 
L = R - 2A the two methods do happen to be equivalent. At any rate, the object of this 
paper is to examine P-variations in the context of quadratic Lagrangians (defined in 
0 2), supplementing a previous discussion (Buchdahl 1960) of difficulties associated 
with P-variations in general. The results obtained reinforce my belief that the uncritical 
use of Palatini’s device, regarded merely as a convenient formal replacement for 
g-variations, is unjustified, for even where no internal inconsistencies arise one is 
confronted with the following position: a given Lagrangian (in general) gives rise to two 
distinct theories, one generated by g-variations and one generated by P-variations. 
The former operate from the outset in a Riemann space V4, whereas the latter operate 
in a space A: with symmetric linear connection on which an independent covariant 
tensor field of valence 2 is defined. In particular this implies that in the context of 
P-variations one is confronted with the presence of tensors such as whereas under 
g-variations their absence is guaranteed by the Riemannian character of the connec- 
tion. In short, a given theory will be generated by a specific Lagrangian L together with 
an explicit prescription that S be stationary either with respect to g-variations or with 
respect to P-variations. 

2. Quadratic Lagrangians 

L is said to be a ‘quadratic Lagrangian’ if it is a (homogeneous) quadratic polynomial 
function of the components of the Riemann tensor. If L also contains additive terms 
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which are linear in or independent of these components, I shall call it an 'inhomo- 
geneous quadratic Lagrangian'. 

Every quadratic Lagrangian density I! is the sum, with constant coefficients, of scalar 
densities 3 of the form 

.. .. .. .... 
wgmng g g R'jklR'bcd, E gmng"R'jkiR'bedt 

where the set of superscripts, indicated by dots, is a permutation of the set of subscripts, 
R ijkl depending on the components of the connection and their first derivatives alone. It 
is obvious by inspection that every 3 is invariant under 'conformal transformations', i.e. 
unaffected by the substitution gij + c$gij, where q5 is an arbitrary scalar function. Since gii 
and rim,, are initially quite unrelated, it follows that gi' and Bkii are likewise con- 
formally invariant, Accordingly, if gii is any solution of the P-equations generated by 
any quadratic Lagrangian, then so is q5gifi (By contrast, the solution of the g-equations 
do not admit this arbitrariness, apart from one special case.) 

It may be noted that the conclusions just drawn hinge on the dimensional number 
being 4. Were it 2n (n integral), corresponding results would obtain for Lagrangians 
which are homogeneous functions (not necessarily polynomial functions) of degree n of 
the components of the Riemann tensor. 

3. The Lagrangian R* 

The P-equations are in this case 
R(R('/) - 1 ii ag R)=O,  (3.1) 

(gi'R),k -8('k(gi)'R),i = 0. (3.2) 

Both equations are satisfied when R = 0. Thus only a single condition is imposed upon 
the 40 functions rkij,  while the gij remain entirely arbitrary. This trivial situation is 
henceforth excluded: R # 0. 

By contraction (3.2) leads to (giiR);' = 0 and the equation reduces to 

(gi'R),k 0. 

Writing this out in full and lowering indices, there comes 

g.. i1.k -rl. rkglj-r>kgli-gij[(ln W),k+(ln R),k-rkI=o,  

where r k  =: r'ik. BY transvection of (3.3) with gij it follows that 

r k  = (In W),k  + 2 ( h  R),k. 

(3.3) 

Thus r k  is a gradient, which implies that Rij is symmetric, since in any A, R[ijl = r[i,j]. 
Furthermore (3.3) reduces to 

2ij.k = r ' ikgi j  + r'jkgii, (3.4) 

where gij := Rgifi At once, 

(3.5) r k , ,  = l - k l  t g  (gli,i + &,i - gii,/)* 

(Ek' is the conjugate of gifi Therefore gk' = R-*gk'.) 
Equation (3.5) shows that the connection of the A.? is that of an auxiliary Riemann 

space v4, the metric tensor of which is g i j ;  that is to say, the connection is metric with 
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respect to gi,. At the same time (3.1) now reads 

Ri .  z a g j i .  (3.6) 

Bearing in mind that Rij is a function only of the connection and its first derivative, Rij is 
at the same time the Ricci tensor of the v4; and according to (3.6) the latter is an 
Einstein space of unit scalar curvature R (:= giiRij). 

Let the class of such Einstein spaces v4 be regarded as known, i.e. regard the gij  as 
known functions. Then R = giiRij = agi'&, so that the equation 

(3.7) 

determines gib It shows that gjj is conformal to gij, consistently with the result of 5 2. At 
any rate, granted that R # 0, the general solution of the P-equations (3.1) and (3.2) is 
any Riemann space conformal to an Einstein space. 

4. The Lagrangian Rk1&kt) 

Write R(kl) := 41, R [ ~ ~ ]  := Fkl. Then to the Lagrangian R,~R" in v4 there corresponds a 
whole family of Lagrangians in A:, namely 

(4.1) 

where a is a constant which can be chosen at will. The general case leads to various 
difficulties, and it will suffice here to concentrate on the relatively tractable case a = 0. 
Then the P-equations are 

L = P k l P k f  -+ cuFklFk', 

By contracting (4.2) one infers that ' $ IJ , ,  must vanish, so that this equation reduces to 

@ " , k  = 0, (4.4) 

P " , k  + r l k l P f '  + r'k[Pfl +[(In w),k - rk]P" = 0. (4.5) 

or, written out in full, 

Now (4.2) and (4.3) are both satisfied when Pf, = 0, i.e. if only the A: is Ricci-flat, the 
g,, remaining entirely arbitrary. This somewhat trivial possibility is therefore set aside 
in what follows. However, I shall make the stronger assumption that P" is of full rank. 
(It is worth noting that in an A: (n Z4) this assumption would be inconsistent with 
(4.3).) Then since, by assumption, g,, is of full rank, 

(4.6) p := det P, = w 4  det P" # 0, 

and there exists a tensor P,, such that 

P lgk '  = SF. (4.7) 
Transvection of (4.5) with P,, shows that 

r k  = (3 In p),ks (4.8) 
since, bearing (4.6) in mind, p#,P'',k = [ ln(~-~p)] ,k .  The fact that r k  is a gradient implies 
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(4.9) 

(4.10) 

(4.11) 

Accordingly the connection of the A: is that of an auxiliary Riemann space c4 whose 
metric tensor is yip Moreover, (4.3) shows that Pii is a scalar multiple of Pii, i.e. of yii, so 
that c4 is an Einstein space. Equation (4.3) may be rewritten in the equivalent form 

(4.12) 

As in 0 3 the yii are to be regarded as known functions, so that (4.12) is an equation for 
gii. It is satisfied if gii = (byii, where (b is an arbitrary function, i.e. granted that p # 0 the 
P-equations are satisfied by any Riemann space conformal to an Einstein space. 
However, whereas in 0 3 this was the only solution of the P-equation (when R # 0), this 
is not the case here. To see this it suffices to consider the case where yii is diagonal. 
Then (4.12) is satisfied by 

g.. 11 = q.(by.. 1 r /  (not summed), (4.13) 

where (b is arbitrary and, for each value of i, 7: = 1.  The possibility of freely choosing 
the signs of the qi allows one to give gii the correct signature whatever that of yii may be. 

5. The Lagrangian RrlllR" 

In 0 4 only the Lagrangian formed from the symmetric part of Rii was examined in 
detail. It is worth considering, as a counterpart, the curious case in which L contains 
only the skew-symmetric part. Thus, taking L = Fi,Fii, one can virtually read the 
P-equations off from (4.2) and (4.3). They are in effect 

If one formally identifies F" with the field tensor of the Maxwell field, so that -iri 
represents the electromagnetic potential, then (5.1) and (5.2) are the equations for a 
field whose energy-momentum tensor vanishes. This, however, implies that = 0. 
The P-equations therefore merely require the A: to be such that Ti is a gradient. They 
thus impose only four conditions upon the 40 functions r m k i ,  and they say nothing at all 
about the gib 

Confronted with such peculiarities one may of course take the view that one should 
simply exclude from the outset Lagrangians which give rise to them. After all, in the 
context of g-variations one excludes L' := 8abcdk"nRabklRCdmn as a Lagrangian since it 
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gives rise to no g-equations at all, L‘ being, as is well known, functionally constant in a 
V4 (e.g. Buchdahl 1970). In other words, the variational principle SjL’w dx = 0 
establishes no control over the gij  at all. 

6. Inhomogeneous quadratic Lagrangians 

It will suffice to consider the special case 

L = a + bR + R 2  (a ,  b =constant). 

The P-equations are 

(L’g’’),k -8“k(L‘g’’),I = 0 ,  
R ( u ) L I - ~ ~ ’ I L ’  = 0 ,  

where L’ := dL/dR. By contraction (6.3) requires that 

b R + 2 a = 0 .  (6.4) 

The case a = b = 0 is excluded here since L is to be inhomogeneous. This leaves the four 
alternatives (i) a # 0, b = 0,  (ii) a = 0, b # 0, (iii) a # 0, b # 0,  b2  -4a # 0 ,  (iv) a # 0, 
b # 0,  b2  -4a = 0 to be considered. 

Case (i). One has a contradiction, the condition a # 0 being in conflict with (6.4), 
i.e. 2 cannot be extremised under P-variations at all. 

Case (ii). According to (6.4) R must vanish and L in effect reduces to R, so that A f  
is a Ricci-flat Riemann space. 

Case (iii). This is also somewhat trivial in as far as R must be constant (= -2a /b ) ,  
and one is led to a Riemannian Einstein space. 

Case (iv). R must again be constant, but beyond this the P-equations become 
nugatory, i.e. the only condition imposed upon the Af is that it have constant scalar 
curvature. 

It is striking how different the various conclusions just drawn are from those to 
which one is led under g-variations, these giving rise to the equation 

R I i j + ( R  +;b )R i j -$g i j (40R+R2+bR+a)=0 ,  (6.5) 
whence, by contraction, 

6 0 R + b R + 2 a = O .  (6.6) 
In no case do these equations require that R be necessarily constant, nor do they lead to 
a contradiction when b = 0. 

Acknowledgment 

I wish to express my thanks to Hubert Goenner for helpful discussions. 

References 

Buchdahl H A 1960 Proc. Camb. Phil. Soc. 56 396-400 
- 1970 Proc. Camb. Phil. Soc. 68 179-185 


